TESA user manual
  • Introduction
  • Installation, getting started, and reporting bugs
    • A quick intro to TESA
    • A quick intro to Matlab
    • A quick intro to EEGLAB
    • Reporting bugs
  • Overview of TMS-EEG analysis
  • Find and mark TMS pulses
    • Find TMS pulses
    • Find TMS pulses (alternative)
    • Fix TMS pulse latencies
  • Remove and interpolate TMS pulse artifacts
    • Remove TMS pulse artifact
    • Interpolate removed data
  • Remove TMS-evoked muscle activity and other artifacts
    • FastICA
    • Component classification (TESA)
    • Plot and remove components
    • Enhanced deflation method (EDM)
    • PCA compression
    • PCA suppression
    • Detrend
    • SSP–SIR
    • SOUND
  • Filter data
    • Butterworth filter
    • Median filter
  • Analyse TMS-evoked potentials
    • Extract TEPs
    • Find and analyse TEP peaks
    • Output peak analysis
    • Output peak analysis (group)
  • Plot TMS-evoked potentials
    • Plot data
    • Plot data (group)
  • Example analysis pipelines
  • TESA functions under development
Powered by GitBook
On this page
  • EEGLAB user interface
  • Scripts
  • Base function
  • Pop function
  • Required inputs
  • Optional inputs (key/value pairs)
  • Outputs
  • Examples

Was this helpful?

  1. Remove TMS-evoked muscle activity and other artifacts

PCA compression

PreviousEnhanced deflation method (EDM)NextPCA suppression

Last updated 4 years ago

Was this helpful?

This function compresses data to n-dimensions using principal component analysis (singular value decomposition) as advocated in the following papers:

In these papers, PCA compression is run before and respectively.

Example of output from PCA compression. Data were compressed from 60 to 30 dimensions.

EEGLAB user interface

1. Enter the number of dimensions to reduce the data by.

2. Turn on/off a plot which summarises the variance of each principal component before and after compression.

Scripts

Base function

EEG = tesa_pcacompress( EEG ); Default use.

EEG = tesa_pcacompress( EEG , 'key1', value1...); Custom inputs.

Pop function

EEG = pop_tesa_pcacompress( EEG ); Pop up window.

EEG = pop_tesa_pcacompress( EEG , 'key1', value1...); Custom inputs.

Required inputs

Input

Description

Example

Default

EEG

EEGLAB EEG structure

EEG

-

Optional inputs (key/value pairs)

Key

Input value

Description

Example

Default

'compVal'

integer

Integer describes the number of components to reduce the data to.

40

30

'plot'

'on' or 'off'

Turns on/off plot summarising the variance explained by principal components.

'off'

'on'

Outputs

Output

Description

EEG

EEGLAB EEG structure

Examples

EEG = pop_tesa_pcacompress( EEG, 'compVal', 40 ); Compress to top 40 dimensions.

EEG = pop_tesa_pcacompress( EEG, 'plot','off' ); Turns off summary plot.

Korhonen, Hernandez-Pavon, et al (2011) Removal of large muscle artifacts from transcranial magnetic stimulation-evoked EEG by independent component analysis. Med Biol Eng Compt, 49:397-407.
Hernandez-Pavon et al (2012) Uncovering neural independent components from highly artifactual TMS-evoked EEG data. J Neurosci Meth, 209:144-57.
EDM
PCA suppression