PCA compression
Last updated
Last updated
This function compresses data to n-dimensions using principal component analysis (singular value decomposition) as advocated in the following papers:
In these papers, PCA compression is run before EDM and PCA suppression respectively.
Example of output from PCA compression. Data were compressed from 60 to 30 dimensions.
1. Enter the number of dimensions to reduce the data by.
2. Turn on/off a plot which summarises the variance of each principal component before and after compression.
EEG = tesa_pcacompress( EEG );
Default use.
EEG = tesa_pcacompress( EEG , 'key1', value1...);
Custom inputs.
EEG = pop_tesa_pcacompress( EEG );
Pop up window.
EEG = pop_tesa_pcacompress( EEG , 'key1', value1...);
Custom inputs.
Input
Description
Example
Default
EEG
EEGLAB EEG structure
EEG
-
Key
Input value
Description
Example
Default
'compVal'
integer
Integer describes the number of components to reduce the data to.
40
30
'plot'
'on' or 'off'
Turns on/off plot summarising the variance explained by principal components.
'off'
'on'
Output
Description
EEG
EEGLAB EEG structure
EEG = pop_tesa_pcacompress( EEG, 'compVal', 40 );
Compress to top 40 dimensions.
EEG = pop_tesa_pcacompress( EEG, 'plot','off' );
Turns off summary plot.